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The mixing produced by a turbulent buoyant plume with finite mass flux in a
room is examined analytically and numerically. The entrainment of ambient fluid
into the ascending buoyant plume leads to a return flow in the room which carries
fluid downwards from the top of the room. The cycling of ambient fluid through
the buoyant plume and the return flow causes the density to become uniform and
gradually evolve towards that of the source fluid. As a result the buoyancy flux
associated with the input fluid decreases and the plume motion becomes dominated
by the source momentum flux. We develop an asymptotic model of the mixing using
buoyant plume theory for a momentum-dominated flow. This provides an analytical
description of the evolution of the density in the room which is in excellent accord with
a full numerical simulation, and provides an improved description of the experimental
filling-box data originally presented by Baines & Turner (1969).

1. Introduction
In a number of industrial processes, highly volatile fluids are stored under pressure

in the liquid phase. Important examples include liquid chlorine, which is used for
purification purposes in the water industry, and liquid natural gas (LNG). If the
pipework associated with the storage tanks of these liquids fails, the liquid escapes
from the tank and on decompression vaporizes and cools, typically producing a source
of dense hazardous gas. When such a rupture occurs within a building, the gas may
contaminate the building before ultimately venting into the atmosphere. Knowledge
of the mixing processes within the building is key for predicting the concentration of
the contaminated air which may vent from the building, as well as for the positioning
of gas detectors and the design of evacuation strategies from the contaminated
building. Similar mixing processes may arise with some air-conditioning systems in
which cold air is supplied to a room from a heat exchanger which removes warm
air from the room. This process drives buoyant convection, which cools the room
and thereby alters the density distribution within the room. Again, knowledge of the
mixing process induced by the injection of the cool air is important for positioning of
thermostats regulating the air-conditioners, as well as for the design of energy-efficient
cooling systems.

Motivated by such problems, there has been substantial interest in the mixing
within a confined room produced by a buoyant plume, originating from a source of
buoyancy. This has built upon the classical work of Morton, Taylor & Turner (1956),
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in which a quantitative model for the motion of a Boussinesq turbulent buoyant plume
was first developed and tested with laboratory experiments. That model considers the
vertical variation of the horizontally averaged and time-averaged volume flux, πQ,
specific momentum flux, πM, and specific buoyancy flux πF , defined as

Q(z) = 2

∫ ∞
0

wpr dr = wpb
2, (1.1)

M(z) = 2

∫ ∞
0

w2
pr dr = wp

2b2, (1.2)

F(z) = 2

∫ ∞
0

g
(ρa − ρp)

ρ0

wpr dr = g
ρa − ρp
ρ0

wpb
2 ≡ g′Q, (1.3)

where wp(r, z) and ρp(r, z) are the axisymmetric, time-averaged vertical velocity and
density distribution within the plume, ρa is the ambient density, ρ0 is a reference
density, g′ is the reduced gravity, and we have defined, for simplicity, the equivalent
top-hat values of the plume density ρp(z) and vertical velocity wp(z), which are
constant within the plume, of characteristic radius b(z), and zero outside. Density
variations from the reference density are assumed to be sufficiently small so that their
only significant effect is on the buoyancy within the flow. These averaged fluxes satisfy

dQ

dz
= 2εM1/2, (1.4)

M
dM

dz
= FQ, (1.5)

dF

dz
=

g

ρ0

dρa
dz

Q, (1.6)

where ε is an empirically determined entrainment coefficient (see Morton et al.
1956; Turner 1979, 1986 for more discussion) appropriate for top-hat models. The
entrainment constant ε takes different values for momentum-driven jets and buoyant
plumes (Turner 1986). In the present work, we find that as the flow slowly evolves
over time scales for which the source mass flux is important, then after an initial
transient, the plume dynamics are little affected by the source buoyancy flux and
we expect that the entrainment process may be accurately modelled using a value
of ε appropriate for jet-like flows. As discussed in § 4 when we apply our predic-
tions to the previously reported experiments of Baines & Turner (1969, hereinafter
referred to as BT69) within an experiment it is possible to infer the actual effec-
tive value of the entrainment constant directly for the particular source and flow
geometry.

BT69 demonstrated that in a confined room, of sufficiently small aspect ratio, the
entrainment of ambient fluid by the plume leads to a return flow in the room. If
the cross-sectional area of the room is sufficiently large so that at all heights within
the room the plume occupies a negligible fraction of the cross-sectional area of the
room A, then the return flow is nearly uniform and given by the volume conservation
relation

wA = −πQ. (1.7)

In the limit, b2 � A, the ambient density within the room ρa(z, t) evolves on a much
longer time scale than that of the buoyant plume. Thus, assuming that the diffusive
transport is negligible on the relatively short time scale of the convective flow, the
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equation for the downward advection of density surfaces ρa, is

∂ρa

∂t
+ w

∂ρa

∂z
= 0. (1.8)

These relations describe the filling-box process associated with a turbulent buoy-
ant plume in a confined room. BT69 solved these equations asymptotically to
describe the late-time density evolution of the ambient fluid, as the continuing
plume supplies fluid to the top of the room, under the assumptions that eventu-
ally: the region contaminated by plume fluid occupies virtually the whole depth of
the room; the buoyancy from the plume is uniformly distributed throughout the
room through the process of entrainment; and the density within the room varies
at a constant rate with time. This model was used to describe laboratory experi-
ments of the filling-box process, with some deviation, as discussed in more detail
in § 4.

Germeles (1975) introduced a more sophisticated numerical scheme to examine
the effect of a source of mass and momentum in addition to the buoyancy. This
did not introduce any substantial differences in the plume behaviour over the filling-
box time scale. In a related study, Worster & Huppert (1983, hereinafter referred
to as WH83) developed the model presented by BT69 further by accounting for
the actual time-dependent variation of the depth of the contaminated region in the
evolution of the asymptotic solution for the density distribution in the room, while
still assuming that the buoyancy of the plume is distributed uniformly in space within
the contaminated region. This model was shown to agree well with full numerical
solutions of plume equations, when the source conditions were defined as a pure
source of buoyancy. However, there is a singularity in the buoyancy at the source
if the source buoyancy flux is finite while the source volume flux is zero. Therefore,
there is no well-defined extremal density within the flow, and in principle the mean
density within the room can decrease without limit. Also, since there is zero volume
flux from the source, the return flow never reaches the actual level of the source, and
the model predicts a zone of sharp stratification in the ambient fluid just above the
source.

In many real problems, the source of buoyancy may also involve a source of mass.
As a result, the source density difference remains finite, and this leads to important
differences in the predictions of the model at long times compared to idealized models
which neglect the mass flux. The purpose of this paper is to examine the long-term
mixing driven by the source of buoyant fluid, accounting for the mass flux and
associated ventilation flow from the room. Now there is a well-defined minimum
density (the source fluid density) for the fluid within the room, and so the room
density must eventually approach the density of the input fluid. We focus on the
evolution of the density profile in the room and the density of the fluid which vents
from the room into the neighbouring environment.

In § 2 we describe the model and develop some asymptotic solutions for the case in
which the plume momentum flux does not evolve significantly over the depth of the
room, assuming that the ventilation opening is at the same level as the source. We
compare this with numerical solutions of the plume equations in § 3, including cases
in which the source fluid initially has significant buoyancy flux, and so the momentum
flux of the plume evolves significantly over the depth of the layer, at least during an
initial transient. We compare our theoretical model with the experimental results of
BT69 in § 4, and then present a specific application of our work in § 5. Finally, we
draw some conclusions in § 6.
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Outflow

Source

Figure 1. Schematic of the flow through a ventilated room with an isolated source of mass and
buoyancy and a single opening at the height of the source.

2. The long-time limit of the ventilated filling box
We adopt the model of the turbulent buoyant plume (1.4)–(1.6) introduced by

Morton et al. (1956), and combine this with the model for return flow (1.8). We assume
that the ambient fluid within the room initially has uniform density, ρa(z, 0) = ρa0.
We also assume there is a plume at the base of the room z = 0 with source volume
flux πQs and density ρs, which is smaller than the initial value of the ambient density
at the floor of the room, ρa(0, 0) = ρa0. In addition, for simplicity, we assume that the
vent is exactly at the same height as the source z = 0, that the vent is of zero depth,
and that the flow through it is purely outwards. We assume that the filling-box flow
develops as described in BT69. In order that the boundary walls do not interfere
with the flow, we require that the aspect ratio (i.e. the height H divided by the square
root of the cross-sectional area A) of the room is sufficiently small (see BT69; Hunt,
Cooper & Linden 2001). This situation is shown schematically in figure 1. Once the
source flux begins to flow, an equal flux, πQs, will start to vent through the opening.
Initially, the density of the fluid which vents is ρv = ρa0. However, since the volume
flux in the plume is finite, the return flow is also finite. Therefore, after a finite time,
the first front descends to the elevation of the opening and contaminated fluid starts
to be vented. The subsequent outflow becomes progressively more contaminated by
source fluid, and, as time increases, ρa(0, t) = ρv(t)→ ρs.

Once the return flow transports plume fluid through the ambient and back to the
same elevation as the source z = 0, the reduced gravity g′s and the effective buoyancy
flux Fs of the source decrease from their initial values of g′0 and F0, i.e.

Fs =
g(ρa(0, t)− ρs)Qs

ρ0

= g′sQs 6 F0 =
g(ρa0 − ρs)Qs

ρ0

= g′0Qs. (2.1)

Equation (1.5) illustrates that in a room of height H , the change in momentum flux
of a buoyant plume with source specific momentum flux πMs, volume flux πQs and
buoyancy flux πFs, is negligible if

P (t) =
5FsQsH

4M2
s

� 1, P (t) 6 P (0) ≡ P0. (2.2)
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If the condition that P (t)� 1 in (2.2) is satisfied for all time, then the mass flux in
the plume varies with height above the source, z = 0, according to the approximate
relation (see (1.4))

Q(ζ) = Qs(1 + θζ), (2.3)

where

θ =
2εM

1/2
s H

Qs
, ζ =

z

H
. (2.4)

The quantity θ represents a non-dimensional dilution factor that quantifies the ratio
of the entrained volume flux to the source volume flux. In Appendix A, we place
these parameters in the context of previous work, and demonstrate how they may be
related to the characteristic length scales of the flow.
P and θ can be thought of as ratios of time scales, pointing to the qualitative

difference between our results and those of BT69 and WH83. Previous studies have
used as a characteristic time scale the entrainment, or filling-box time tfb, which, for a
plume with specific buoyancy flux F0 in a room of height H and cross-sectional area
A is given by

tfb =
5AH

6επ

(
10

9εF0H5

)1/3

. (2.5)

(BT69 and WH83 used the related time scale (9/10)4/3tfb/3.) The time scale given by
(2.5) is the ratio of the volume of the room to the volume flux of a buoyant plume of
source buoyancy flux F0 as a result of entrainment during ascent through the room.
It represents the time required to entrain and mix the fluid in the room through
the plume, if the plume properties are determined exclusively by the source specific
buoyancy flux.

However, if the source has non-zero volume flux, there are two other characteristic
time scales for the flow within the room. Just as the filling-box time is associated
with the source buoyancy flux, these two time scales are associated with the source
(specific) momentum flux Ms and source volume flux Qs. First, a time scale tm can be
defined using the source momentum flux, Ms, and it takes the form

tm =
AH

2πεM
1/2
s H

. (2.6)

This time scale, which we shall refer to as the momentum entrainment time scale,
represents the time required for a turbulent jet, with momentum flux Ms, to entrain
and mix the fluid in the room. This is analogous to the filling-box time scale. If the
source also has non-zero volume flux, Qs, there is a further characteristic time scale,
the fluid replacement or turnover time

tv = AH/(πQs). (2.7)

The time tv represents the time required to replace all the fluid in the room with input
fluid, in the complete absence of mixing. In this paper, we are interested in the long
time mixing and density evolution of the room, and so we have adopted this latter
time scale as the characteristic time scale.

The parameters θ and P can be expressed as

θ ≡ tv

tm
, P ≡

(
5

3

)5
t4m
tvt

3
fb

, (2.8)
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with Fs replacing F0 in (2.5). Our asymptotic results apply for P � 1, i.e. t3fb � t4m/tv ,
and in this limit, the ratio of the time scales tv and tm, as given by θ, determines
the evolution of the concentration distribution within the room. In § 4, we highlight
the qualitatively different behaviour of our predictions from that considered by BT69
and WH83 in the light of these time scales.

The plume concentration Cp, the ambient concentration Ca, and the vented con-
centration Cv are defined as

Cp(ζ, t) =
ρa0 − ρp(ζ, t)
ρa0 − ρs , Ca =

ρa0 − ρa
ρa0 − ρs , Cv =

ρa0 − ρv
ρa0 − ρs . (2.9)

These concentrations range between zero (initial ambient fluid) and one (source fluid).
Assuming Q satisfies (2.3), Cp and Ca can be related by

Cp(ζ, t) =

1 + θ

∫ ζ

0

Ca(u, t) du

1 + θζ
. (2.10)

From (1.8), Ca evolves according to the non-dimensional advection equation

∂Ca

∂τ
= (1 + θζ)

∂Ca

∂ζ
, τ =

πQst

AH
=

t

tv
. (2.11)

Henceforth, we consider non-dimensional variables Cp, Ca, ζ and τ.
In the enclosed space, the concentration of the plume at the ceiling of the room,

Cp(1, τ), equals the ambient concentration, Ca(1, τ), at the ceiling of the room. As-
suming that there is a single ventilation opening at the same elevation as the plume
source, and using (2.11), Ca is constant along characteristics η defined by

1

θ
log(1 + θη) = τ+

1

θ
log [1 + θζ] . (2.12)

Therefore, the time τ at which a particular concentration surface is at a given depth
ζ can be related to the (previous) time τζ when that concentration surface is at the
top of the room, ζ = 1:

τζ = τ− 1

θ
log

(
1 + θ

1 + θζ

)
. (2.13)

The (non-dimensional) residence time τr for concentration surfaces to migrate from
the roof (ζ = 1) to the vent (ζ = 0) is given by

τr = τ− τ0 =
1

θ
log(1 + θ), (2.14)

where τ0 is τζ as defined in (2.13), with ζ = 0, the source height, i.e. the (non-
dimensional) time that the concentration surface at the source was at the top of the
room, ζ = 1.

Under the assumption that P � 1, as defined in (2.2), the first fluid from the plume
that arrived at the ceiling at time τ = 0 (the so-called first front) reaches the source
height ζ = 0 at time τ = τr, and leaves through the vent. Therefore,

Ca(ζ, τ) =

1 + θ

∫ 1

0

Ca(u, τζ) du

1 + θ
, (2.15)
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and in particular

Ca(0, τ) =

1 + θ

∫ 1

0

Ca(u, [τ− τr]) du

1 + θ
=

1 + θCa(τ− τr)
1 + θ

, (2.16)

defining the mean ambient concentration within the room Ca. Global conservation of
Ca implies

dCa
dτ

= 1− Cv(τ) = 1− Ca(0, τ), Ca(0) = 0, (2.17)

since the ambient fluid is initially completely uncontaminated by source fluid.
For times τ < τr, the first front has not yet reached the source, and so

Ca(τ) = τ. (2.18)

Once the first front has reached the vent, substituting (2.16) into (2.17) yields

dCa
dτ

=
θ

1 + θ

[
1− Ca(τ− τr)] . (2.19)

Once Ca(τ) is known for the time interval (n− 1)τr < τ < nτr (n > 0 an integer)
we may find Ca(τ) during the interval nτr < τ < (n+ 1)τr by integration of (2.19).
Therefore, for the interval nτr < τ < (n+ 1)τr , for n > 1 the concentration is given by

Ca(τ) = λn+(−1)n
(

θ

1 + θ

)n
τn+1
n

(n+ 1)!
+

n∑
k=1

(−1)k+1
(
1− λ(n−k)

)( θ

1 + θ

)k
τkn
k!
, (2.20)

τn = τ− nτr, λ0 = 0, λ1 = τr, (2.21)

λn = λn−1 + (−1)n−1

(
θ

1 + θ

)n−1
τnr
n!

+

n∑
k=2

(−1)k
(
1− λ(n−k)

)( θ

1 + θ

)k−1
τk−1
r

(k − 1)!
, n > 2. (2.22)

Although (2.22) provides an exact solution for the problem, it is somewhat unwieldy,
and an accurate, approximate solution may be derived by noting that equation (2.19)
admits exponential solutions of the form

1− Ca = a1 exp(−θ(τ− τr)) + a2 exp(−θφ(τ− τr)), (2.23)

where φ is the root of the indicial equation

φ = (1 + θ)(φ−1). (2.24)

Although these solutions do not satisfy the boundary conditions exactly, a good
approximation may be derived by choosing the constants a1 and a2 such that this
solution exactly matches the power series solution at the time τ = τr, when the plume
fluid first exits from the vent,

Ca(τr) = τr,
dCa
dτ

∣∣∣∣
τ=τr

= 1− Cf =
θ

1 + θ
, (2.25)

where Cf is the concentration of the first front, the leading contaminated fluid that
has come from the plume rising through a completely uncontaminated room. As is
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shown in § 3, this approximate solution is in very good accord with the full solution,
even during the early times, τ = O(τr).

The approximate asymptotic solution (2.23) predicts that the deviation 1 − Ca
of the mean concentration from pure source fluid consists of two decaying parts,
with non-dimensional time scales τ1 = 1/θ and τ2 = 1/(φθ). The time scale τ1 =
tm/tv corresponds to the non-dimensional entrainment or filling-box time scale for
a momentum-dominated plume. The approximate analytical solution proves very
instructive particularly in the two extremes of θ � 1 and θ � 1.

In the limit of substantial dilution in the plume, θ � 1, φ→ 1/θ � 1, and so τ2 ∼ 1,
which corresponds to the fluid replacement time. However, in this case, the time scale
for mixing τ1 � 1 is very fast, corresponding to a plume which mixes the room rapidly
through entrainment. We deduce that the adjustment is two-fold: initially there is a
rapid adjustment over the time τ1 ∼ 1/θ, at the end of which Ca � 1; then, over the
time scale τ2 ∼ 1, Ca → 1 exponentially.

Indeed, the limit θ →∞ corresponds to the case of a well-mixed room with no
vertical variation in concentration. The flow of pure source fluid (with concentration
Cp = 1) into the room must then be balanced by an equal flow of ambient well-mixed

fluid with concentration Ca, so that

dCa
dτ

= 1− Ca, Ca ∼ 1− e−τ (2.26)

using the appropriate boundary condition that Ca = 0 when τ = 0.
In the opposite limit in which there is little dilution in the plume, θ � 1, φ� 1.

For this limit, the arrival time of the first front τr ∼ 1 and corresponds to the fluid
replacement time. Indeed, in this limit the volume flux of the plume varies little by
entrainment, and the speed of descent of concentration surfaces (given by (1.7) and
(2.3)) is essentially constant. Entrainment and mixing by the plume is so slow that
the stratification in the room essentially consists of a step-like profile, with a layer
of unmixed fluid (with Ca ∼ 1) propagating down towards the source at a close to
constant speed. When the front arrives, Ca ∼ 1.

Care needs to be taken in the interpretation of flows in this limit due to the large
volume flux of fluid into the room from the source. As discussed in BT69, the depth
of the outflowing layers that develop when the plume arrives at the ceiling should
be of the order of the plume radius at the ceiling. As discussed in more detail in
Appendix A, in this limit the effective source radius bs > H , and so although very
little entrainment occurs in the limit of small θ, it is to be expected that the outflowing
layer will have a significant depth compared to H . However, such a layer of fluid can
only appear on a time scale of the order of the replacement time scale (i.e. τ ∼ 1)
as this is the time scale over which such a volume of fluid enters the room from the
source. Indeed, to leading order this layer increases in depth linearly with time as the
source fluid enters the room, and undergoes very little entrainment as it spreads and
fills the room. Therefore, for small θ the adjustment of the mean concentration to
that of pure source fluid occurs essentially linearly with time, whereas for a vigorous
plume with θ � 1 the mixing is exponential with time.

The solutions for the mean ambient concentration ((2.18) and (2.20)) may be used
to determine the concentration at any height in space by combining equations (2.13),
(2.15), and (2.16) to give the expression

Ca(ζ, τ) =
1

1 + θ
+
θCa(τζ)

1 + θ
. (2.27)
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The variation of the concentration with time can be shown to be dependent on
height in general, in contrast to the asymptotic assumption of BT69 and WH83, a
consequence of Ca → 1 as τ→∞ everywhere within the room. In the next section, we
explore the behaviour of the full model for larger values of the quantity P , defined
in (2.2).

3. Numerical solutions
To solve the full problem defined by equations (1.4)–(1.6), (1.7) and (1.8) with given

constant source conditions Qs, Ms and ρs we have adopted the numerical integration
scheme of Germeles (1975). The scheme relies on a discretization of the ambient
density field (or equivalently the concentration field) into a finite number of ‘layers’
separated by sharp ‘interfaces’ or ‘levels’. The evolution of the plume through the
height of the room is assumed to occur much more rapidly than the evolution of
the ambient density field within the room. The plume equations (1.4)–(1.6) are first
solved using the (static) discretized layerwise density field, which is then advected
towards the source by using a discretization of (1.8) with the appropriate velocity
being determined using (1.7). Volume is conserved by introducing a new layer at the
ceiling of the room, with volume given by the volume flux through the uppermost
interface multiplied by the time step. The concentration is determined by noting that
the fluid must come from the rising plume (see Germeles 1975 for a more detailed
discussion).

In figure 2, we consider the time variation of the mean ambient concentration Ca
in flows with nine different initial conditions, corresponding to three different values
of θ, (0.1, 1 and 10) and three different values of the parameter P0 (0.1, 1 and 10)
as defined in (2.2). For all the cases shown here, there is excellent agreement between
the theoretical prediction of the exact asymptotic model and the full numerical
results.

In contrast to the well-mixed model, the exact asymptotic model also predicts the
vertical distribution of the ambient concentration Ca(ζ, τ), by use of (2.13), (2.15)
and (2.16). For the same nine simulations as are shown in figure 2, in figure 3,
we compare the vertical profiles of ambient concentration determined by the full
model (plotted with a solid line) and the aysmptotic model (the solution to (2.20)
and plotted with a dashed line) for twenty times τ = n/4 for n = 1 . . . 20. In general
the agreement is good, particularly at later times as P (t) inevitably drops to small
values.

Since Cv < Ca, the well-mixed model always over-estimates the concentration of
the fluid leaving the room and hence under-estimates Ca. For the flows with smaller θ,
it is clear from figure 3 that the first front arrives at the vent substantially later than
for the flows with larger θ. This later arrival is the cause of the sharp change of the
rate of increase of Ca in figure 2(a–c), and is well-predicted by the reduced models.
Before the first front arrival, Ca linearly increases (see (2.18)). After the first front
reaches the vent, the rate of change of Ca decreases markedly, since contaminated
fluid is being vented from the room. This sharp change in behaviour is not apparent
for flows with larger θ, since for these flows the arrival time of the first front at the
vent occurs on the filling-box or entrainment time scales, i.e. τr ∼ τ1 ∼ 1/θ � 1. The
weak concentration gradients for flows with large values of θ, and thus significant
amounts of plume entrainment, are the result of thorough mixing by the plume over
the time of interest, and so the difference between the well-mixed model and the exact
solution is small.
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Figure 2. Comparison of the variation with time of the mean concentration Ca for the full solution
of the numerical system (shown with a solid line), the full asymptotic solution (given by (2.20) and
shown with a dashed line), the approximate exponential solution (defined by (2.23) and plotted
with a dot-dashed line), and the well-mixed model ((2.26) and plotted with a dotted line) for flows
with (a) θ = 0.1, P0 = 0.1; (b) θ = 0.1, P0 = 1; (c) θ = 0.1, P0 = 10; (d ) θ = 1, P0 = 0.1; (e) θ = 1,
P0 = 1; ( f ) θ = 1, P0 = 10; (g) θ = 10, P0 = 0.1; (h) θ = 10, P0 = 1; (i ) θ = 10, P0 = 10; as defined
in (2.4) and (2.2).

4. Comparison with the experiments of BT69
In the previous section, we showed that once all the fluid within the room has been

cycled through a finite volume flux plume, the density distribution evolves towards
the density of the input fluid. It is interesting to compare our analysis with the
earlier works BT69 and WH83, as the asymptotic approach Ca → 1 at all heights is
qualitatively different from the predictions of the classical filling-box flow, associated
with a pure source of buoyancy (as discussed in BT69). In that case, as mentioned
in the Introduction, since there is no flow from the source, the plume density at the
source is singular and so for a positive source of buoyancy, the models predict that
the density in the room decreases without limit (WH83). In BT69 and WH83, only
the simple situation in which Qs = Ms = 0 was considered. As a result, tm →∞ and
tv →∞ (as defined in (2.6) and (2.7)) and the parameters θ and P0 are determined
by considering the limits for these parameters as both Qs → 0 and Ms → 0. It is well
known (see e.g. Turner 1979, 1986) that for a plume rising from a point source of
buoyancy flux, F0, with Q = M = 0 at the source, into an unstratified ambient, there
is a similarity solution given by

Q(z) =
6ε

5

(
9ε

10

)1/3

F
1/3
0 z5/3, M(z) =

(
9ε

10

)2/3

F
2/3
0 z4/3, (4.1)
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Figure 3. Comparison of the variation with time of ambient concentration profiles Ca(ζ, τ) for the
full solution of the numerical system (shown with a solid line) and the full asymptotic solution
(given by (2.20) and shown with a dashed line) at times τ = nτr/4 where n = 1 . . . 20 and τr is as
defined in (2.14) for flows with (a) θ = 0.1, P0 = 0.1; (b) θ = 0.1, P0 = 1; (c) θ = 0.1, P0 = 10; (d )
θ = 1, P0 = 0.1; (e) θ = 1, P0 = 1; ( f ) θ = 1, P0 = 10; (g) θ = 10, P0 = 0.1; (h) θ = 10, P0 = 1; (i )
θ = 10, P0 = 10; as defined in (2.4) and (2.2).

and so the appropriate forms of θ and P0 are

Ppb = θpb = lim
z→0

5H

z
→∞. (4.2)

Therefore, the models BT69 and WH83 only apply for the initial stages of mixing
when the source momentum flux is small and our momentum-driven asymptotic
model is not applicable owing to the large value of the parameter P0.

By assuming that the plume buoyancy flux is uniformly distributed throughout the
room through entrainment, BT69 were able to estimate the ambient density profile.
They showed that, subject to this assumption, the non-dimensional asymptotic profile,
labelled f0 in BT69, is given by the expression

f0 = −
(

10

9

)(
15

2

)1/3
t

tfb
+

(
5AH

3πF0tfb

)(
5

9

)1/3
g(ρa − ρ0)

ρ0

(4.3)

' 5

(
5

18

)1/3 [
ζ−2/3

(
1− 10

39
ζ − 155

8112
ζ2

)
− 1959

2704

]
, (4.4)

where the buoyancy flux has been set to be zero at the ceiling ζ = 1.
However, real experiments such as those presented by BT69 do involve small, yet

finite values of the source volume and momentum fluxes and hence finite values for
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the time scales tv and tm and the parameters θ and P0. The models proposed by BT69
and WH83 are therefore only strictly valid during times short compared to the fluid
replacement time for flows in which tfb � tv . This restriction may be expressed in
terms of the dimensional source parameters as(

3

4

)(
6ε

5

)4

g′0H
5 � Q2

s , (4.5)

where g′0 is the initial source reduced gravity as defined in (2.1).
In their experiments, plume flow within an enclosed space was modelled by a

source of dense salty fluid at the top of a tank, descending through fresh water. The
depth of water in the tank was allowed to increase, under the assumption that the
hydrostatic pressure change associated with this increasing depth had little dynamic
effect on the flow evolution. This experimental situation corresponds to a source at the
same height as the vent within our formalism. The initial density difference between
the salty plume fluid and the fresh room fluid was 13%–16%. The cross-sectional
area of the tank was 2.5 × 103 cm2, and the effective depth of the room was varied
between 17.5 cm and 36 cm. Also, the source buoyancy flux was varied in the range
66–128 cm4 s−3 by variation of the density difference between the source and ambient
and through variation of the source volume flux. These data imply that for the
experiments reported, the filling-box time scale varies in the range tfb ' 300–500 s,
while the fluid replacement time scale is significantly longer, tv ' 6× 104–2× 105 s.
We therefore expect that, for times equal to or in excess of the filling-box time, then
the mass flux will have an important effect on the evolution of these experiments.

In order to compare our model with their results, we have estimated an appropriate
value of θ for the data presented by BT69 in two ways, as discussed in Appendix B,
and to a reasonable approximation, it appears that θ took three characteristic values,
45, 65 and 85 in the experiments. We show the ‘dimensionless density defect’, a
rescaled version of (4.4) given by

g[ρa(ζ)− ρa(1)]H5/3

ρ0(πF0)2/3
=

f0

(4πα2)2/3
= [Ca(ζ)− Ca(1)]

(
F0H

5

π2Q3
s

)1/3

, (4.6)

from these experiments in figures 4(a), 4(b) and 4(c) respectively. In this expression
α is the experimentally determined entrainment constant under the assumption of
Gaussian profiles of density and velocity within the plume, which was found to be
equal to 0.1, by consideration of the propagation speed of the first front (see Appendix
B). As is well-known, (see e.g. Turner 1979, 1986) the top-hat entrainment coefficient
ε used throughout this paper is linearly related to the Gaussian entrainment constant
α associated with the experimentally observed profiles, such that ε =

√
2α.

It is apparent that the experimental density profile has larger values than the
approximate model prediction of BT69, especially in the vicinity of the source. For
comparison, we also present the numerical predictions of our model (i.e. (2.27)
rescaled as on the right-hand side of (4.6)) using source conditions given by the
appropriate value of θ, and assuming P0 = θ, at the non-dimensional times τe = te/tv ,
where te is the reported time of the experimental measurement. Allowing for the
small, yet finite source volume flux provides a more accurate description of the
experimentally observed density profiles, particularly in the vicinity of the source.
The very good comparison of our model predictions with the data supports the
simplifying assumption we have made that P0 = θ as is discussed in more detail in
Appendix B.
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Figure 4. Comparison of the theoretical prediction for the dimensionless density deficit profile
with height ζ due to BT69 and defined in (4.6) (shown with a solid line), the experimental
measurements reported in BT69 for various flow conditions (shown with symbols), and the numerical
profiles from calculations with the same estimated source conditions, measurement time and scaling
(shown with broken lines): (a) θ ' 45, P0 ' 45, 17.5 cm < H < 19 cm, τ2 = 0.22; (b) θ ' 65, P0 ' 65,
27.5 cm < H < 32.5 cm, τ2 = 0.14; (c) θ ' 85, P0 ' 85, H < 36 cm, τ2 = 0.09, τ3 = 0.28.

We conclude by reiterating that the assumption of BT69 that the ambient density
changes linearly with time can only apply for times early compared to the fluid
replacement time tv , even for such flows with large dilution parameters θ. This is
because the stratification becomes eroded by the continual outflow of fluid from the
room. We deduce that any finite volume flux at the source causes the density profile
to evolve away from the approximate density profile defined in BT69 for times in
excess of tv .

5. Application example
In real applications, it may be the case that the dilution factor θ is substantially

smaller than in the laboratory. Therefore, the behaviour of real systems may well be
qualitatively different from the experimentally investigated flows with high entrain-
ment, and yet be described well by the finite-source volume flux model developed
in § 2. One important class of application is the case of a cold air supply from a
ceiling-mounted (and vented) air-conditioner, to a room of cross-sectional area of the
order of A = 100 m2 and height H = 4 m, such as a meeting or lecture room. If we
assume that the initial temperature difference between the air-conditioned air and the
air inside the room is of the order of 10 ◦C, then g′0 ∼ 0.3 m s−2. If the room has about
fifty occupants, then in order to maintain comfortable air quality, a ventilation flow
of order 1 m3 s−1, would be required. For a ventilation opening of area 1 m2 which
allowed inflow of cold air from the air-conditioning unit at the top of the room, there
would be a high-Reynolds-number turbulent flow at the source with ws ∼ 1 m s−1.

In this case, the filling-box time would be tfb ' 500 s, while the fluid replacement
time is tv ' 400 s, and so θ ' P0 ' 1.4. Since the filling-box time is comparable to
the fluid replacement time, we expect the ambient stratification to retain considerable
vertical structure until the first front vents from the room. The system will then
converge to a uniform steady state. For this example we assume that the vent from
the space is close to the same height as the source (i.e. near the ceiling). In figure 5(a)
we show the evolution of the mean temperature within the room towards that of
the air-conditioned air (solid line) and compare it both to the prediction of our
asymptotic model (dashed line) (given by (2.18) and (2.20)) and the well-mixed model
(dotted line) (2.26). For a significant period of time (of the order of 10–15 minutes)
the mean temperature in the room is over-estimated by 2–3 ◦C by the well-mixed
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Figure 5. (a) Comparison of predictions of the mean temperature within a room, initially at 32 ◦C,
which is cooled with conditioned air at 22 ◦C given by the full solution of the numerical system
(shown with a solid line), the full asymptotic solution (given by (2.20) and shown with a dashed
line), the well-mixed model ((2.26) plotted with a dotted line) for a flow with θ = 1.4 = P0, and
tv = 400 s as defined in (2.4), (2.2), and (2.7). (b) Comparison of the variation with time of ambient
temperature profiles for the full solution of the numerical system (shown with a solid line), and
the full asymptotic solution (given by (2.20) and shown with a dashed line) at times t = 100n s
where n = 1 . . . 5 for our application example. The circles denote the predicted temperature from
the well-mixed model (2.26) at these five times. Time increases from right to left.

model, while our asymptotic model agrees extremely well with the full numerical
model. The origin of these differences may be understood by examining the evolution
of the temperature profile.

In figure 5(b) we show the temperature profile at five times during the flow
development, and compare these profiles with the predictions of the well-mixed
model (2.26) shown as circles on the x-axis of the figure. Note, for clarification,
that in this example, the vent and source are both at the ceiling (ζ = 1) and the
temperature decreases with time due to the air conditioning, and so these profiles are
inverted compared to those shown in figure 3. Our asymptotic model (dashed line)
predicts the vertical temperature distribution in the room (solid line) very accurately.
The well-mixed model (circles) under-estimates the temperature at early times at the
vent (ζ = 1) since it does not capture the vertical stratification within the room. In
particular, the calculations identify that a hot layer of fluid persists near the ceiling
for some time. Therefore, in contrast to our approximate analytical model, the very
simple well-mixed model under-estimates the amount of heat leaving the room due
to the displacement of room air by the inflow from the air conditioner, and over-
estimates the temperature within the room, in particular at low levels, for a few fluid
replacement times (approximately 30 minutes).

Although the model has been applied to interpret the transient evolution of the
density resulting from a source of cooling fluid supplied to a room, the model can
also be used to interpret the transient dispersion of smoke or poisonous gases which
may leak into an enclosed space. For example, the model presented in § 2 could be
used to identify optimal locations for sensors of noxious gases or smoke, so as to
maximize the time available to occupants for evasive action.

6. Conclusions
In this paper, we have considered the flow within an enclosed space with a

single vent and a localized continuous source of fluid of different density, which we
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have modelled as a buoyant plume. We have found that once all the fluid initially
within the room has been cycled through the plume by turbulent entrainment the
density of the fluid within the room tends towards the density of the source fluid.
If the source volume flux is small compared to the volume flux entrained during
the motion of the plume across the vertical extent of the room, then we predict
that the room becomes close to well-mixed, with the ambient density approach-
ing the density of the source fluid exponentially with time. For very early times
this exponential convergence appears to correspond to a linear variation with time,
as postulated in previous laboratory work (BT69). Nevertheless, inclusion of the
finite-source volume flux in our model quantitatively improves the description of
these flows. Conversely, if the plume entrains very little fluid as it rises through
the room, we find that in the long-time limit the room density converges approxi-
mately linearly to that of the source fluid. As well as a full numerical solution of
the equations describing the evolution of the plume and ambient fluid, we have
developed approximate analytical models that can describe accurately both the tem-
poral and spatial variation of the concentration in the room. These models are based
on the realization that with a finite-source mass flux, in the long-time limit the
momentum flux of the plume inevitably varies little as the plume rises within the
room.

There are numerous additional challenges in this area for applying the theory of
turbulent plumes and classical filling-box theory to flows involving a net mass flux
as well as more complex room geometry. We are at present examining the flows
which arise in a room with one or more ventilation openings at different heights from
the source in addition to an imposed mass flux and will report on those issues in
subsequent contributions.

Appendix A. Relationships involving θ and P0

Here we examine the connection between our parameters P and θ and parameters
which have been introduced in previous work. First, we note that the ratio P/θ
corresponds exactly to the momentum flux parameter Γ discussed by Morton (1959)
which classifies sources in an unbounded ambient:

Γ =
P

θ
=

5FsQ
2
s

8εM
5/2
s

. (A 1)

Γ = 1 corresponds to so-called ‘pure plume balance’, i.e. the plume appears to be
rising from a source of buoyancy alone at some distance below the actual source,
while Γ < 1 describes forced plumes, with an excess of source momentum flux, and
Γ > 1 describes distributed or ‘lazy’ plumes, with a deficiency of source momentum
flux, or equivalently, a source too large for pure plume balance for the given value of
Qs (Caulfield & Woods 1995; Hunt & Kaye 2001). Γ also corresponds to the inverse
square of a Froude number, comparing the relative importance of the buoyancy to
the source velocity.

The parameters defined here can also be interpreted as ratios of length scales. From
(1.4)–(1.6), we write

Qs ≡ wsbs, Ms ≡ w2
s b

2
s , Fs ≡ g′swsb2

s , (A 2)

defining an effective source radius and velocity. Therefore, it is apparent that θ is
essentially the inverse of the non-dimensional effective source radius, i.e. θ = 2εH/bs.
Large values of θ can thus be thought of as corresponding to small sources (thus
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subject to significant increases in volume flux through entrainment as the plume rises
in the room) while smaller values of θ correspond to larger sources, with significantly
less entrainment as the plume rises. Since the volume conservation relation (1.7)
requires that the plume occupies a negligible fraction of the cross-sectional area A of
the room, a further implicit assumption of our model is that bs � A.

Similarly, the parameter P can be related to a ratio of length scales. The char-
acteristic length scale over which the source momentum flux is important compared
to the source buoyancy flux is the jet length Lj (List 1982), while the characteristic
length scale over which the source volume flux is important compared to the source
buoyancy flux is the ‘acceleration length’ (see Caulfield & Woods 1995) La:

Lj =
M

3/4
s

F
1/2
s

, La =
Q

3/5
s

F
1/5
s

, P =
5

4

(
La

Lj

)5/3
H

Lj
. (A 3)

As Fs decreases, Lj and La increase, illustrating that the source buoyancy flux becomes
less and less important.

Appendix B. Determination of experimental values of θ and P0

To estimate the appropriate values of the parameters θ and P0 for experimental
flows, it is necessary to identify the specific momentum flux associated with the source.
Near the source there may be a zone of flow establishment, especially if the Reynolds
number of the flow at the source is sufficiently small (List 1982). For the experiments
reported in BT69, the appropriate form for the Reynolds number is

Re =
πF0R

g′0πR2ν
, (B 1)

where R is the source radius, and ν is the kinematic viscosity of water. Substituting
the quoted values of g′0 and πF0 into this expression, it appears that the exit Reynolds
numbers were of the order of 50–100, and thus unlikely to be fully turbulent.

However, information about the actual relationship between Ms and Qs in the
laboratory can be inferred from consideration of the rate of descent of the first front
of contaminated fluid towards the source. In the experimental configuration used in
BT69, the speed of any density surface is given by (1.7). For the fluid ahead of the first
front, since the plume is rising in an unstratified environment, so that the buoyancy
flux of the plume is constant at its initial value F0, it is possible to reduce (1.4)–(1.6)
to the single equation

dQ

dz
=

(
20ε4F0

Q3
s

)1/5(
Q

Qs
+

[1− Γ ]

Γ

)1/5

, (B 2)

where Γ is Morton’s momentum flux parameter, as defined in (A 1). Irrespective of
the value of Γ , solutions to (B 2) will ultimately tend towards a state of so-called
‘pure plume balance’ for which the plume appears to have risen from a source of
pure buoyancy alone with an ‘effective origin’ ze distinct from the actual origin.

If pure plume balance applies immediately upon leaving the source, Γ = 1, and
then Q(z) and M(z) are given by (4.1) with (z + ze) replacing z on the right-hand
sides of the equations, with z = −ze as the notional location of the effective origin.
This can be combined with (1.7) to establish an implicit formula for the location of
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the first front zf with time:

t =
5A

4π

(
10

9εF0(H + ze)2

)1/3
([

(H + ze)

(zf + ze)

]−2/3

− 1

)
. (B 3)

If this functional form for the relationship between the time t and the location of
the first front zf is found, then there is strong evidence that Γ = 1 (at least after any
initial zone of flow establishment) and hence that pure plume balance pertains from
near the source, as any other value of Γ inevitably leads to a different relationship
between Q and z from (B 2), and hence a different relationship between t and zf . As
discussed in Appendix A, Γ = 1 further implies that P0 = θ.

BT69 showed for all their experiments that the analogue of (B 3) appropriate for
(experimental) Gaussian profiles of velocity and density (i.e. replacing ε with

√
2α,

the Gaussian entrainment constant, as mentioned in § 4) did indeed describe well the
time-dependence of the first front location for a particular value of the effective origin
of the plume of the order of 0.8 cm. The comparison of the experimental data with
the predictions of (B 3) also yielded the estimate of α ' 0.1. The observation that the
first front propagation speed is well-modelled by (B 3) suggests that to leading order
it is appropriate to approximate the plume motion as being in pure plume balance
for the turbulent plume flow in their experiments, although this may introduce some
error in the vicinity of the source, where the solution of (B 2) may be different from
the asymptotic form (B 3), which applies in the far field.

Therefore, the effective source conditions Qs and Ms (and so θ = P0) can be
expressed in terms of the effective origin ze, the entrainment constant ε and the
source buoyancy flux F0 (all experimentally measured quantities):

Qs =
6ε

5

(
9εF0z

5
e

10

)1/3

, Ms =

(
9εF0z

2
e

10

)2/3

, θ = P0 =
5H

3ze
. (B 4)

The observation of the propagation of the first front in a way that is consistent with
pure plume balance allowed BT69 to measure directly the effective origin ze, and this
experimentally measured quantity can then be used to determine θ and P0.

A second, independent method of determining ze can be made indirectly using the
expression for Qs in (B 4) which can be reposed as an equation to determine the
unknown ze. For the experiments reported in BT69, these two distinct methods give
values of ze (and so θ and P0) within 10% of each other, and so a reasonable first
assumption is to suppose that P0 = θ. This is not a major constraint, as, particularly
for such large values of θ, variations in P0 are not all that significant in the evolution
of Ca.
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